Chapter 3 Affected Environment In this Chapter: - Existing natural environment - Existing human environment - Protected resources This chapter describes the existing environment that may be affected by the alternatives. A brief regional description is given here to give the reader a better understanding of the information in this chapter. The project area is in the uppermost reaches of the Columbia River Basin, within the Snake River watershed. It is part of the Greater Yellowstone Ecosystem, which is the largest remaining block of relatively undeveloped land in the contiguous United States. This ecosystem is centered around Yellowstone and Grand Teton National Parks and includes the national forests, wilderness areas, wildlife refuges, and other federal, state, tribal, and private lands that surround these parks. The landscape is scenic. Dominant features include mountain ranges over 3,660 m (12,000 feet) high, alpine valleys, rivers, broad flat plateaus, picturesque farmlands, and the special features of the national parks. The region is known for its variety of wildlife, unequaled elsewhere in the continental United States. Species present in large numbers include bighorn sheep, pronghorn antelope, moose, mule deer, elk, and black bear. Wolverines, grizzly bears, and reintroduced wolves are present as well. This region attracts over 5 million tourists and recreationists per year (Wyoming Department of Commerce, 1995). Visitors and local residents enjoy sightseeing, hiking, alpine and nordic skiing, snowmobiling, camping, backpacking, horseback riding, mountain biking, snowboarding, parasailing, hunting and fishing. Because of the concentration of highly visible wildlife species in the region, wildlife-related recreation is a key element of the region's economy and character. ## 3.1 Land Use The existing ROW crosses both private agricultural land and public lands (timber and rangeland) in northeastern Idaho and western Wyoming. About 84 percent (52 km [30 miles]) of the ROW is on the Targhee and Bridger-Teton National Forests. Of that, about 80 percent is within the Targhee National Forest, and 20 percent is within the Bridger-Teton National Forest (see Map 1). Three existing substations are in rural, residential and mixed use (residential and commercial) areas. ## Reminder Hectare: about two and one-half acres ## For Your Information Pine Creek Bench is a broad level slope extending up from the base of the Snake River Range near Swan Valley Substation. ## 3.1.1 Timber and Rangelands The existing ROW crosses timber and rangelands (see Map 3, Land Use). In the Targhee National Forest, about 188,185 hectares (465,000 acres) are available for timber harvest (U.S. Department of Agriculture, Forest Service, 1997). Of that amount, none in prescription 8.1 (in which the existing and proposed ROW are located) are suited for harvest. In the Bridger-Teton National Forest, about 113,000 hectares (279,000 acres) are suited for timber harvest (U.S. Department of Agriculture, Forest Service, November 1989a). ## 3.1.2 Agriculture The area surrounding the existing ROW is semi-arid with cold, moist winters and hot, dry summers. The average annual precipitation on Pine Creek Bench is about 38 cm (15 inches) and the frost free period is about 70 days (U.S. Department of Agriculture, Soil Conservation Service, 1981). Average annual precipitation in Jackson, Wyoming is also about 38 cm (15 inches) but frost is possible almost any time of year. Crop yields are limited by the short growing season. In addition, although the distribution of precipitation throughout the year allows dryland farming, dry periods during the summer and fall can also adversely affect soil preparation and winter grain seeding. The existing ROW crosses about 6.4 km (4 miles) of productive cropland on the west end of the ROW in Bonneville County, Idaho, and about 1.6 km (1 mile) of dryland and irrigated pasture at the east end of the ROW in Teton County, Wyoming (see Map 3). A new switching station near Targhee Tap would cover about a 0.4 hectare (1 acre), but BPA would purchase about 1-2 hectares (3-5 acres) of agricultural land. Bonneville County has 55,000 hectares (137,000 acres) of non-irrigated cropland (Jensen, September 9, 1996). Teton County has 7,300 hectares (18,000 acres) of pasture (Sutton, September 30, 1996). Agriculture is confined to valley floors and adjacent benchlands. The main crops grown in the Swan Valley area are wheat, barley, potatoes and alfalfa. Bonneville County is one of Idaho's leading malt barley producing areas. Soils on Pine Creek Bench are suited to spring barley and winter wheat, and are predominately dryland farmed using a cropping system that alternates a year of grain with a year of fallow. The area's livestock industry provides an outlet for feed hay and potato waste products. Beef cattle are the primary livestock, but dairy cattle and sheep are also raised (University of Idaho, 1993). In the Jackson area, irrigated land supports hay production and pasture for cattle. #### 3.1.3 Residential and Commercial Teton Substation is located in unincorporated Teton County, Wyoming, near the Town of Jackson on land zoned "NC-SF" (Neighborhood Conservation-Single Family). The substation is surrounded on three sides by Lake Creek Subdivision, with rural farmland owned by the Snake River Association to the west. Jackson Substation is located on land zoned "S-R" (Suburban Residential) in the Town of Jackson. Adjoining land uses include medium density residential and commercial businesses. These include multi-family dwellings (condominiums), an RV park, a commercial lodging facility, a major supermarket and a neighborhood gas station. The area north of Jackson Substation where it could be expanded is zoned "A-C" (Auto Urban Commercial). This land has been cultivated recently. ### 3.2 Visual Resources The area's visual character and quality are recognized as an important resource at national, state, and local levels, and tourists from around the world come to see nearby natural features. This section provides detailed information on viewpoints and viewers of the existing ROW. Because the entire ROW is not visible from a single viewpoint, seven potential viewing areas called *Visual Assessment Areas* were identified. These areas are described in detail. Photographs of views from the five most sensitive areas are provided as representative of various views from areas surrounding the existing ROW. See Map 4, **Visual Assessment Areas and Viewpoint Locations**, for visual assessment areas and photographed locations. In general, the existing ROW is well sited on the landscape about one-third of the way up forested slopes, with a buffer of vegetation between the ROW and roadways. The ROW follows the general contours of the land instead of cutting a straight swath through rolling and mountainous terrain. No long stretches of line follow the top of a ridgeline where the line would be dominant. Foreground is within 0.4 to 0.8 km (0.25 to 0.5 mile) of the viewer; middleground is from the foreground to about 8 km (5 miles) of the viewer; and background is over 8 km (5 miles) from the viewer. Distance zones are based on Forest Service standards (US Department of Agriculture, Forest Service, 1974). Idaho has identified State Route 31 and part of Route 33 as designated scenic byways. Twenty-eight miles of the existing ROW passes within sight of these highways. ## Reminder Structure locations refer to BPA's designation of existing 115-kV transmission line structures. Structures are numbered, with the first number denoting the mile and the second number denoting the structure number (e.g., 3/7 is mile 3, structure 7). ## 3.2.1 Visual Assessment Area 1 - Swan Valley The existing ROW begins at Swan Valley Substation and runs for about 6.4 km (4 miles) through rural, rolling open agricultural lands with scattered ranches. Typical views in this area generally are *foreground* views of farmland and crops, *middleground* views of rolling rural landscape, and *background* views of rolling hills and open sky. Viewers are residents of scattered farmhouses, and commuters, tourists, and residents using State Route 31. The existing ROW is generally not dominant in the view. The ROW is in the background or is blocked from view by rolling terrain. Residential viewers are generally considered highly sensitive to changes in views. Commuters and local viewers along State Route 31 generally have low sensitivity to changes in view. Tourists are sensitive to views, but are not expected to be highly sensitive to views of the ROW as they pass through the area because transmission line structures are hidden or are in the background. Also, most tourists are en route to other scenic destinations and may be unlikely to perceive the structures in agricultural fields as inconsistent with the view. # 3.2.2 Visual Assessment Area 2 - State Route 31/Targhee National Forest At about structure 5/2, the terrain becomes more hilly and forested as the existing ROW enters Targhee National Forest. From structure 5/2 to structure 15/1, the ROW runs through the national forest next to State Route 31. This terrain is rolling, has steep hills and lower mountains with predominantly coniferous forests. Pine Creek runs in a meadow-like valley south of State Route 31 and between the steep forested ridges where the transmission line passes. The views are generally very rugged, natural, and undeveloped. Typical views are foreground views of Pine Creek Valley nestled between steep, forested slopes that form the valley walls (see Figure 3-1). Willows and deciduous shrubs fill the valley floor, and there are occasional glimpses of Pine Creek. With the exception of the State Route 31 roadbed, the foreground view is very natural. Middleground views are of steep forested slopes covered predominantly with evergreen trees. The existing ROW is in the middleground of the view, about one-third to
one-half of the way up the forested slopes and is partially hidden from view by trees. In some places, the ROW can be clearly seen along the slope. The background view is sky or an occasional distant mountain silhouette. Viewers are tourists traveling through the area to enjoy the statedesignated scenic byway; recreationists (e.g., hunters, anglers, horseback riders, cross-country skiers, organized camp participants, hikers, and snowmobilers) using USFS roads, campgrounds, and organized camps; and commuters to Victor and Driggs, Idaho. Tourists' sensitivity to views is considered high, but the sensitivity of commuters is low. Recreationists' sensitivity in general is considered high, although sensitivity would vary depending on each group's focus. See Section 3.3, **Recreation Resources**, for sensitivity levels of each recreational group. Also, many sensitive viewers pass through this area because of State Route 31's scenic byway designation. # 3.2.3 Visual Assessment Area 3 - South of Victor/State Route 33 From structure 15/1 to structure 19/6, the existing ROW descends into the hillsides that define the southern boundary of a vast flat plateau. Located in this open plateau and closest to the existing ROW is the small town of Victor. The views through this area are generally rural, with expansive views of flat, rural lands surrounded by rugged and rolling mountainous terrain. The existing ROW is in the middleground and background of the view about one-third of the way up the mountains. Typical foreground views are of flat scenic farmland with scattered rural housing. Middleground views are of flat farmland and rolling, steep rugged mountains, and background views are of open sky and some distant mountain silhouettes. Figure 3-2 depicts a typical view of the existing ROW from south of Victor. Viewers are residents of south Victor including ranchers and single-family home residents, and motorists traveling on side roads south of Victor. Residential viewers are concerned about potential impacts to views from south of Victor. In the area south of Victor, some residents have views of Targhee Tap. In summer, deciduous and evergreen trees break this view. In winter, with snow and no leaves on the deciduous trees, Targhee Tap is more visible. # 3.2.4 Visual Assessment Area 4 - Idaho State Route 33 and Wyoming State Route 22/Targhee National Forest At structure 19/6, the ROW continues east over a rise of foothills and crosses Idaho State Route 33 at structure 21/2. The ROW then follows State Route 33 and Wyoming State Route 22 in the rugged, forested Teton Mountains. The general character of this area is of rugged views of steep mountains along each side of the highway. Typical views in this area are foreground views of highway roadbed, middleground views of forested mountain slopes, and background views of sky. The existing ROW is generally sited about one-third to one-half of the way up the slope and is viewed through a buffer of evergreen trees, similar to the view in Figure 3-1 through the Pine Creek area. At the ascent to Teton Pass, the transmission line can be seen traversing the steep, rocky slopes just before crossing over Teton Pass summit. The conductors (transmission line wires) are very visible at this point because of the orange marker balls hanging on the conductors to alert pilots and birds. Views through this area are similar to those shown in Figure 3-3, but from lower elevations. Viewers are tourists traveling through the area enjoying the scenery; recreationists (particularly campers using three formal USFS campgrounds along this stretch, hikers parking and entering the Jedediah Smith Wilderness Area on the north side of the highway, horseback riders, cross-country skiers, alpine skiers, and snowboarders using bowls at Teton Pass, and hunters); and commuters generally traveling from the Victor and Driggs, Idaho, area to Jackson, Wyoming. The sensitivity level of tourists to views is considered high, but the sensitivity of commuters is considered low. The sensitivity level of recreationists in general is considered high, although sensitivity depends on each group's focus. See Section 3.3, **Recreation Resources**, for sensitivity levels of each recreational group. Also, many sensitive viewers pass through this area because State Route 33 is scenic. ## 3.2.5 Visual Assessment Area 5 - Summit of Teton Pass/ Bridger-Teton National Forest At structure 28/5, the line enters Bridger-Teton National Forest and ascends through highly scenic Teton Pass, a mixture of vast mountainous views and vistas of Jackson Valley. The ROW crosses Wyoming State Route 22 in Teton Pass at structure 30/5. Typical views in this area are vistas where the viewer is on high, steep slopes. Generally, this setting has little to no foreground view (see Figure 3-3). Middleground views are of extremely rugged forested mountain terrain. Background views are glimpses of the distant alpine valley floor, silhouettes of mountains, and vast sky views. Views are highly scenic. The ROW is clearly visible in the middleground and background. Viewers are tourists who drive through the pass and stop at scenic overlooks; recreationists including hikers, horseback riders, cross-country skiers, downhill skiers, snowboarders, wildlife and bird watchers, backpackers, and photographers/artists; and commuters generally traveling from Victor and Driggs into Jackson. Tourists and recreationists are considered very sensitive to this view. Recreational viewers' level of sensitivity depends on the activity. Recreationists such as snowboarders and skiers using the ROW as a downhill route would be somewhat less sensitive to the view of transmission line facilities, while hikers, backpackers, cross-country skiers (touring in the area), and photographers/artists would be more sensitive to view changes since their recreational experience is not tied to the existence of the ROW. ## 3.2.6 Visual Assessment Area 6 - Ski Lake Trail/Bridger-Teton National Forest From structure 30/5 to structure 35/1, the ROW passes through highly scenic mountainous backcountry. Typical views in the Ski Lake Trail area (structures 31/1 to 34/7) generally are foreground views of coniferous woods or alpine meadows (covered during some times of year with colorful wildflowers), middleground views of rugged mountain terrain including coniferous forest and alpine meadows, and background views of distant valley floors and mountain silhouettes. Views are highly scenic. Viewers are a diverse group of recreationists, including cross-country skiers, hikers, backpackers, horseback riders, mountain bike riders, and photographers/artists. This trail system is heavily used by winter recreationists who do not depend on the ROW for their recreation experience. The entire Teton Pass area is popular in winter. For this reason, Figure 3-4 shows the winter setting. The existing ROW is visible in the middleground of the picture, which is typical of views where the transmission line is visible. # 3.2.7 Visual Assessment Area 7 - Residential Neighborhoods Next to Teton Substation From structure 35/1 to Teton Substation, the ROW descends into the scenic Wilson Valley, an area of rural-residential and scattered, resort-like developments. Typical views in the neighborhoods that surround Teton Substation vary, with foreground views depending on location, middleground views of the flat scenic Wilson Valley, and background views of rugged rolling mountains. Viewers are mostly residents. Residents here are extremely sensitive to changes in the view. Other viewers include commuters, golfers, and resort guests. Figure 3-5 is a typical view of the existing ROW from the Teton Substation area. This view is representative of most residential views. In the Teton Substation area, some residents have views of the existing substation. Summer views of the substation are broken up by existing deciduous trees that surround the substation, but there are clear views of substation structures, which are taller than the surrounding vegetation. Winter views are more predominant because of the loss of leaves from deciduous trees. This makes the substation clearly visible. However, in years of high snowfall, some resident views would be blocked by snow piles from the clearing of snow from streets. ## 3.3 Recreation Resources This section describes motorized and nonmotorized recreation activities in the project area and each activity's relationship to the existing ROW. Table 3-1 lists recreation facilities inventoried within clear view of the existing ROW and Map 5, **Recreation Sites**, shows the location of these facilities. Table 3-1. Recreation Facilities in View of the ROW | Site | Facilities | |---|--| | 1. Pine Basin Lodge | lodge, trails, Pine Creek | | Rigby - LDS Stake Girl Scout Camp and Trailhead | trailhead, Pine Creek | | 3. Pine Creek Ridge Trail and Piney Creek | trailhead, major turnout along highway | | 4. Pine Creek Campground | picnic tables, fire circles, outhouse | | 5. Teton Valley Campground | campsites, cabins, pool | | 6. RV Park | campsites, water/sewer/electric hookups | | 7. Trail Creek Pond Sportsman Access | pond, picnic tables, fire circles | | Moose Creek Road and Trailhead for Scenic Crest Trail and Moose Meadows | trails, unimproved road | | 9. Mike Harris Campground and Trailhead | campsites, picnic tables, fire circles, drinking water | | 10. Trail Creek Campground | campsites, picnic tables, outhouses, fire circles | | 11. Unofficial campsite/Burbank
Creek/Trailhead | informal fire pit, trailhead | | 12. Coal Creek Trailhead | parking, restroom, trailhead | | 13. Mail Cabin Canyon Road/Trailhead | trail | | 14. Teton Pass Wildlife Viewing Area | parking lot, trailhead | | 15. Phillips Canyon Trailhead | parking lot, trailhead | #### 3.3.1 Motorized Recreation In most cases
the existing ROW follows roads that are a common route for tourists traveling through the region and visiting national parks and monuments. Tourists and sightseers commonly travel along State Routes 31 and 33, portions of which are designated Idaho Scenic Byways. The existing transmission line is currently visible from these roads in many locations. The ROW is noticeable in the middleground and background of most views but is not at any time a dominant feature. Figure 3-1 shows a typical view through this section. Sightseers travel to the top of Teton Pass and spend time at pullouts next to the road viewing vistas across the mountains and down into Jackson Valley. The existing ROW is noticeable in the middleground and background of the view but is not the dominant feature. See Figure 3-3 for a typical high-quality view enjoyed by sightseers in Teton Pass. Motorists drive motorbikes and all-terrain vehicles (ATVs) on a limited number of USFS roads that access or are within the existing ROW (structures 15/2 to 20/10 or Murphy Creek to the highway crossing of Idaho State Route 33). Off-roaders not using the ROW travel under the transmission line and are quickly out of view of the ROW. Some hunters use ATVs in or near the existing ROW (only the areas mentioned above). Hunting from a vehicle is prohibited but hunters access hunting areas and carry game out using these vehicles. These recreationists' relationship to the ROW is the same as described above. Fishing occurs in or near the existing ROW. In the Pine Creek area, anglers see the ROW on the mountain side along the south side of State Route 31 and at road crossings. Because anglers are focused on the water, sensitivity levels to the ROW are considered low. Parasailing is very popular from the bluffs of Phillips Ridge. Parasailers access the ridges by driving on the existing ROW access road at Ski Lake and Phillips Pass Trails. Once they arrive at their desired launching areas, they spread out equipment on the ROW to prepare for takeoff from Phillips Ridge. They then move through a thin line of trees to launch from the ridge. Snowmobile use is high throughout the Pine Creek Pass area, and follows Upper Creek Road to popular trailheads. Trails are not formally groomed by the USFS. Snowmobilers pass under the ROW and move away from the line. For this reason, snowmobilers' views of the ROW are brief. Snowmobilers also use the ridges of the Pole Canyon area and south of Victor. Snowmobile use is somewhat lower through this area than in the Pine Creek area. Some snowmobiling occurs along the highway at State Routes 33 and 22. Snowmobiling is very popular north of State Route 22 in Bridger-Teton National Forest because of the high-country setting. Snowmobile use is prohibited on the south side of State Route 22 in Teton Pass from December 1 through April 30. #### 3.3.2 Nonmotorized Recreation Nine trailheads are close to the existing ROW. In all areas except Teton Pass, hikers and backpackers cross under the existing line briefly as the trail leads away in a perpendicular direction from the line. The ROW is not a major element in the visual experience of these hikers because many of the trails quickly ascend over the hillside and proceed out of view. This is true for the Pine Creek Ridge Trail, Scenic Crest Trail, Moose Meadows Trail, Trail Creek, Burbank Creek, Mail Cabin Trail, and Coal Creek Meadows Trails. In some cases hikers and backpackers use the existing ROW access roads for hiking. Because these recreationists are relying on the ROW for access, their sensitivity to views of the line is much lower than for those headed into backcountry areas. Teton Pass is a high recreation use area. Hikers and backpackers have access to a number of backcountry trails. Ski Lake and Phillips Pass Trails, located on the north side of State Route 22 just before the summit of Teton Pass, lead into backcountry areas, along with Black Canyon Trail, which travels generally south and east from the wildlife viewing area at the summit of Teton Pass. The existing ROW is visible from these trails for about 4 to 5 km (2.5 to 3 miles). The ROW is noticeable in the middleground and background of the view but is not the dominant feature because mature trees break up the views. Hikers are the most sensitive to disruptions in the mostly pristine views from these trails. Five developed campgrounds were inventoried within sight of the existing ROW. In most instances, campers either cross under the transmission line to access campgrounds or view the ROW through trees. In each of the four USFS campgrounds (Pine Creek Campground, Mike Harris Campground, Moose Creek Campground, and Coal Creek Campground), views are of the surrounding forest. There is not a major focus on the ROW, although the ROW is close to the camps. This is also the case with the one private campground. Campers use tents, pop-up trailers, and RVs at these campgrounds. One undeveloped campsite was inventoried. Campers cross under the transmission line briefly to access the campsite, but the ROW is not a dominant feature in the view from this camp. ## • For Your Information See Map 5 for the location of some of these trailheads. Map 5 shows these campgrounds. Mountain bikers use many USFS roads and trails along the entire ROW. Mountain bikers rely on the ROW for recreation and would be less sensitive to viewing the ROW. Through the Pine Creek area, mountain bikers pass briefly under the line and follow USFS roads away from the ROW. These bikers' experience with the transmission line is brief. Mountain bikers in the Teton Pass area view the ROW on Phillips Pass and Ski Lake Trails. Their sensitivity to views of the ROW is high when they are not cycling, but lower while riding because of the concentration required to negotiate the trails. Bikers using the abandoned State Route 22 roadbed in Teton Pass have some clear views of the ROW. One mountain-biking outfitter, Hobak Sports, is currently permitted by Bridger-Teton National Forest to use areas near the ROW on Phillips Ridge. Outfitters commonly ride the ROW access road in this area. Horseback riders use the same facilities described for hikers and backpackers. Tie posts are provided at some of the trailheads. Sensitivity levels to the ROW are the same as for hikers using these facilities. In general, cross-country skiers use the trails described before. The existing recreation experience for skiers is similar to that for hikers, except views and time of year differ. Figure 3-4 shows the view of the ROW from Ski Lake Trail in winter. Two cross-country ski outfitters hold permits to use areas close to the existing ROW. Jackson Hole Ski Club skis under the transmission line along Phillips Ridge for training early in the season if snowfall in the valley is inadequate. Jackson Hole Mountain Guides operates a facility near Ski Lake during the winter (Langerman, 1996). Alpine and nordic skiers, and snowboarders also use natural bowls on both sides of Teton Pass. On the eastern side of the pass, skiers ski down the face of the mountain, under the transmission line, then follow the abandoned State Route 22 roadbed to the bottom of the hill. They park cars at the base of the abandoned highway bed at the bottom of the hill and either hitchhike or drive back up to the summit of Teton Pass (Marsh, 1996). These skiers are less sensitive to the view of the ROW because they rely on the cleared area to ski partway downhill. ## 3.4 Public Health and Safety Transmission facilities provide electricity for heating, lighting and other services essential for public health and safety. These same facilities can potentially harm humans. Contact with transmission lines can injure people and damage aircraft. This section describes public health and safety concerns, such as shocks and noise, related to transmission facilities. ## 3.4.1 Electric and Magnetic Fields Transmission lines, like all electrical devices and equipment, produce electric fields and magnetic fields (EMF). *Current*, movement of electrons in a wire, produces the magnetic field. Voltage, the force that drives the current, is the source of the electric field. The strength of magnetic fields depends on the design of the line and on distance from the line. Field strength decreases rapidly with distance. Electric and magnetic fields are found around any electrical wiring, including household wiring and electrical appliances and equipment. Throughout a home, the electric field strength from wiring and appliances is typically less than 0.01 kilovolts per m (kV/m). However, fields of 0.1 kV/m and higher can be found very close to electrical appliances. Typical electric and magnetic field strengths for some common electrical appliances are given in Table 3-2. Table 3-2. Typical Electric and Magnetic Field Strengths 30.5 cm (1 ft.) from Common Appliances | | Electric
Fields | Magnetic Field (1) | |----------------------|--------------------|--------------------| | Appliance | (kV/m) | (mG) | | Coffee maker | 0.03 | 1-1.5 | | Electric Range | 0.004 | 4-40 | | Hair dryer | 0.04 | 0.1-70 | | Television | 0.3 | 0.4-20 | | Vacuum cleaner | 0.016 | 20-200 | | Electric blanket (2) | 0.01-1.0 | 15-100 | kV/m = kilovolt per meter; mG = milligauss Source for appliance data: Miller 1974; Gauger 1985 ▶ For Your Information A **milligauss** is one thousandth of a gauss. A **gauss** is a unit of magnetic induction. Average magnetic field strength in most homes (away from electrical appliances and home wiring, etc.) is typically less than 2 *milligauss* (*mG*). Very close to appliances carrying high current, fields of tens of hundreds of milligauss are present. Unlike electric fields, magnetic fields from outside power lines are not reduced in strength by trees and building material. So, transmission lines can ^{1.} By 1 to 1.5 meters (3-5 ft.), the magnetic field from appliances is usually decreases to less than 1mG. ^{2.} Values are for distances from a
blanket in normal use, less than 30.5 cm (1 ft) away. be a major source of magnetic field exposure throughout a home located close to the line. Typical electric and magnetic field strengths for some BPA transmission lines are given in Table 3-3. Table 3-3. Typical Electric and Magnetic Field Strengths from BPA Transmission Lines | | Electric
Fields | Magnetic Field | | |----------------------------|--------------------|----------------|-------------| | 115-kV Transmission Lines | (kV/m) | (mG) | | | | | Maximum (1) | Average (2) | | Maximum on Right-of-way | 1.00 | 62 | 30 | | Edge of Right-of-way | 0.50 | 14.00 | 7.00 | | 60 m (200 ft.) from center | 0.01 | 1.00 | 0.50 | kV/m = kilovolt per meter; mG = milligauss Note: Above information obtained from a BPA study to characterize nearly 400 transmission lines located in the Pacific Northwest. Based on 1995 data. There are no national standards for electric or magnetic fields. Some states have established electric or magnetic field standards, but Idaho and Wyoming have not. BPA has an electric field standard of 9 kV/m maximum on the ROW and 5 kV/m at the edge of the ROW. Both electric and magnetic *alternating-current* (*a-c*) fields induce currents in conducting objects, including people and animals. These currents, even from the largest transmission lines, are too weak to be felt. However, some scientists believe that these currents might be potentially harmful and that long-term exposure should be minimized. Hundreds of studies on electric and magnetic fields have been conducted in the U.S. and other countries. Studies of laboratory animals generally show that these fields have no obvious harmful effects. However, a number of subtle effects of unknown biological significance have been reported in some laboratory studies (Frey, 1993). Much attention has focused on several reports suggesting that workers in certain electrical occupations and people living close to power lines have an increased risk of leukemia and other cancers (Sagan, 1991; National Radiological Protection Board, 1992; Oak Ridge Associated Universities Panel, 1992; Stone, 1992). Most scientific reviews, however, find that the overall evidence is too ^{1.} Under annual peak load conditions (occurs less than 1 percent of the time) ^{2.} Under annual average loading conditions weak to establish a cause-and-effect relationship between electric or magnetic fields and cancer. A review of some of the studies relating to EMF and possible biological and health effects are included in Appendix C, **EMF**. #### 3.4.2 Noise ## For Your Information Corona is a discharge, often glowing, at the surface of a conductor or between two conductors of the same transmission line. A technical definition is in Chapter 9, Glossary and Acronyms. #### 3.4.2.1 Transmission Line Noise Audible noise can be produced by transmission line *corona*. It is usually associated with higher voltages. (See 3.4.3, **Radio and TV Interference**.) #### 3.4.2.2 Substation Noise Teton Substation is surrounded by a residential neighborhood and pasture land. As a result, the site is relatively quiet, as quiet as a normally quiet office. Jackson Substation is located on a busy road and surrounded by mixed use residential and commercial businesses. Sound varies as a result of weather and other factors such as background noise, and the kind of equipment operating at the time, and could be higher or lower on any particular day or at any particular time at these substations. #### 3.4.3 Radio and TV Interference Corona may cause radio and television reception interference by generating a high-frequency noise called electromagnetic interference (*EMI*). EMI is the static sometimes heard over a car radio when driving beneath high-voltage lines. It is usually associated with higher voltage lines, that is, 345-kV and above. ## 3.4.4 Toxic and Hazardous Materials Minimal amounts of hazardous waste result from routine maintenance procedures performed on substation equipment and transmission lines. Kinds and volumes of waste such as oily rags, minor leaks from vehicles, etc., depend on the maintenance procedure. Swan Valley Substation has several transformers and power circuit breakers that contain oil. *Polychlorinated biphenyl* (*PCB*)-contaminated oil has been removed over time. There is no oil spill containment system, but BPA does have a Spill Prevention Control and Countermeasure Plan that puts in place protocols and procedures for response in case a spill occurs. Teton Substation also has a transformer and power circuit breakers that contain oil. PCBs have been removed. BPA does not have a spill plan for this substation, but one is scheduled to be completed in summer 1997. Jackson Substation has oil-filled circuit breakers and a transformer; none contain PCBs. An oil containment berm surrounds the entire substation. ## For Your Information Fire was raised as a safety concern during the scoping process for this project. **Succession** is the progressive change in plant communities toward climax, or the final stage of succession. **Nonstocked** category is a stand of trees or group of stands that have a stocking level below the minimum specified for meeting the prescribed management objectives. Stocking is a measure of timber stand density as it relates to the optimum or desired density to achieve a given management objective. #### 3.4.5 Fire Wildfire plays a major role in forest succession throughout the western United States, including the forests in northeastern Idaho and western Wyoming. The Targhee National Forest has had significant timber harvest activities and both national forests have maintained aggressive wildfire suppression activities within nonwilderness lands. Only 4 percent of the forested stands in the Big Hole mountain area and 1 percent in the Teton Range are in the **nonstocked**, seedling or sapling age category (U.S. Department of Agriculture, Forest Service, January 1996a). Many of the shrublands are also in late age classes. This creates hazards for large fires, disease problems, and insect infestations. In the project area, the most common cover type is lodgepole pine/ Douglas fir mixed with lodgepole pine converting to Douglas fir as succession proceeds. Aspen has declined with fire suppression, as conifers take over or give way to a shrub/grass plant community. Often forests that are mature or older have less diversity and productivity than plant communities that are undergoing succession. Of the conifers, mature Douglas fir is the most fire resistant because of the thick bark that develops with age. Engelmann spruce and subalpine fir have very low resistance, and lodgepole pine is moderately resistant to fire (Bradley, et al., 1992). ## 3.5 Water Quality Most precipitation in the region falls as snow, with as little as 25 cm (10 inches) of precipitation per year at lower elevations, and as much as 114 cm (45 inches) per year at higher elevations. Precipitation is about 38 cm (15 inches) annually at Swan Valley and Jackson and increases with elevation. The amount of sediment in area streams varies with the season. Streams and rivers carry the most sediment as snow melts in May and June (U.S. Department of the Interior, U.S. Geological Survey, 1996). Occasional, intense summer rains also raise flows and the amount of sediment in rivers and streams. Waters affected by point and/or non-point source pollution and not currently in compliance with or expected to satisfy applicable water quality standards are listed with EPA as "water quality limited." **Loess** is a windblown deposit of fine-grained **silt** or clay. Streams are part of the Upper Snake River drainage basin and ultimately flow into the Snake River. Pine and Trail creeks in Idaho, and Fish and Lake creeks in Wyoming are prominent streams crossed by the existing ROW (see Map 6, Floodplains and Wetlands). Many smaller *perennial* and *intermittent* drainages are also crossed. Wetlands crossed by the existing ROW are associated with riparian habitat. Surface water in the area is of sufficient quality to support a number of uses including fish and wildlife habitat, agriculture, and recreation. Tributaries to Pine and Trail creeks are steep, high energy streams capable of carrying significant amounts of sediment to Pine Creek during spring runoff. The Teton River headwaters, above the confluence of Trail Creek, are listed as "water quality limited" under Section 303(d) of the Federal Clean Water Act due to extensive habitat modification. Idaho water bodies listed as water quality limited are being assessed. A current listing does not mean such water bodies are not presently in compliance with state water quality standards. Regulations that better identify if water bodies meet water quality standards are being developed. Once approved, the list of water bodies that are water quality limited could be re-evaluated. Principal groundwater *aquifers* include *alluvial* and glacial deposits within valley floors and sedimentary rocks of pre-Tertiary age (Columbia-North Pacific Basins Commission, 1970). Groundwater quality is generally good to excellent throughout the area. Groundwater is a supplemental source for irrigation water in the region. ## 3.6 Soils and Geology Diverse landforms and geologic features exist within the project area, which is in the Middle Rocky Mountain physiographic *province*. From Swan Valley Substation, at an elevation of 1700 m (5600 feet), the existing ROW crosses a broad level slope extending from the base of the Snake River Range. Known as the Pine Creek Bench, the deep *loess* soils are used extensively for dryland farming. The Snake River Range trends southeast to the Teton Range and is characterized by long parallel ridges cut or separated by valleys and canyons. The mountains are made of folded sedimentary rock that has been pushed eastward upon low angle fault planes. Erosion has worn away the less resistant rock layers, leaving the
harder rocks standing as ridges. Soils have formed in materials derived from these sedimentary rocks, including limestone, dolomite, sandstone and shale. **Gneiss** is a banded or foliated metamorphic rock, usually of similar composition as granite. The **piedmont** is the area of land at the foot of a mountain or mountain range. Mass movement is the dislodgment and downhill transport of soil and rock materials under the direct influence of gravity. Includes movements such as creep, debris torrents, rock slides, and avalanches. The Tetons, one of the youngest ranges in the Rocky Mountains, abuts the Snake River Range near Teton Pass. The Tetons are made up of mostly darker metamorphic *gneiss* and lighter-colored granite. Sedimentary rocks are exposed on the western slopes, forming cliffs of stratified rocks. Teton Pass, at an elevation of 2620 m (8600 feet), is the highest elevation along the existing ROW. The Teton fault, which can generate a magnitude 7.5 earthquake, is crossed by the existing line. The fault parallels the eastern front of the Teton Range and is an integral part of the Intermountain Seismic Belt. Recent investigations indicate that the fault is overdue for a moderate-to-large earthquake (Glass, 1996). The Teton Range is the product of uplift along this fault that began about 9 million years ago. Much of the landscape reflects the impact of past glaciation. Several cycles of climatic cooling followed by warming during the past 2 million years caused the advance and retreat of both alpine and *piedmont* glaciers. Teton Substation, at 1890 m (6200 feet), is on soils derived from *glacial outwash* and re-sorted by present day streams. Jackson Substation formed in alluvial deposits along Flat Creek. Geologic hazards include *landslides*, avalanches, *seismic* risk, steep slopes and erosion (see Map 7, *Soil Limitations*). *Mass movement* is one of the most active erosion processes in this area due to the high relief, steep slopes, deformed weak bedrock, high water-holding capacities of soils, frequent seismic disturbances, and slope undercutting by streams (U.S. Department of Agriculture, Soil Conservation Service, July 11, 1985). Unstable slopes on both sides of Teton Pass have shown signs of recent movement. ## 3.7 Floodplains and Wetlands The existing ROW crosses areas that have been identified as **100-year floodplains** on Flood Insurance Rate Maps (*FIRM*) (see Map 6). The Federal Emergency Management Agency (*FEMA*) identifies areas that have a 1 percent chance of being flooded in a given year as 100-year floodplains. The 100-year floodplains crossed by the existing ROW and/or existing access roads are: - Pine Creek: T2N, R43E, Sec. 14; T2N, R44E, Sec. 6; T3N, R44E, Sec. 31; T3N, R44E, Sec. 29; T3N, R44E, Sec. 28 - Trail Creek, Idaho: T3N, R46E, Sec. 30 - Fish Creek: T41N, R117W, Sec. 2 - Lake Creek: T41N, R117W, Sec. 2. Teton Substation is located between Fish Creek and the Snake River in an area FEMA designated as Zone X. Zone X areas are **Low-gradient** means with gentle slopes. **Emergent** plants have their bases submerged in water. **Aspect** is the degree of exposure to the sun. Habitat type is defined as lands capable of producing similar plant communities at climax. Climax is the end point in plant succession when the community will perpetuate itself if the current environmental conditions prevail. A **forb** is any herbaceous plant that is not a grass or not grasslike. An **outcrop** is an exposure of bedrock through the overlying cover of soil. defined as areas of 500-year flood; areas of 100-year flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from a 100-year flood (FEMA, 1989). Within the mountainous regions of the project area, wetlands can be found associated with *low-gradient* streams or in V-shaped drainages along narrow riparian zones. Two major drainages support riparian wetlands: Pine Creek, which drains into the Snake River; and Trail Creek, which drains into the Teton River. These wetlands are characterized by *Salix* (willow) species and have an understory dominated by sedges and grasses. Wet meadows characterized by *Carex* (sedge) species are also found in the project area. There are also wetlands associated with Fish Creek and Lake Creek by Teton Substation. These have developed from surface and irrigation runoff and support *emergent* vegetation types such as grasses, rushes and sedges. ## 3.8 Vegetation The vegetation in the region is a diverse mix because of topography, climate, *aspect*, and soils. Most of the existing ROW is mountainous with steep slopes. Disturbances such as fire, disease, grazing, and clearing (for roads, timber harvest, campgrounds, etc.), as well as natural disturbances such as avalanches and landslides, have also helped determine vegetation cover types. Cover type is used to describe the vegetation that exists in the project area. *Habitat type* differs from cover type in that it indicates what would exist on that site if *climax* vegetation had been allowed to develop. Also, habitat type usually has management implications for timber, range, wildlife, recreation, and visual resources. Because of disturbances, such as fire, logging, grazing, and insect and disease outbreaks, not all of the land currently supports climax vegetation. Most of the vegetation communities can be classified into four general categories: forest, shrublands, grass/*forb* communities and agriculture. Dominant vegetation communities are shown on Map 8, **Vegetation**. Other smaller plant communities can also be found interspersed within the larger categories, such as wetlands, riparian areas, rock *outcrops* and disturbed areas. Vegetation has been characterized as disturbed in recreational areas such as campgrounds or hiking/biking trails. These areas are prone to invasive species such as knapweed and thistle, as are access roads and the existing ROW. #### 3.8.1 Forested Forests of mixed conifers cover a great portion of the project area. Mixed conifer cover types are dominated by Douglas fir and lodgepole pine, with Engelmann spruce, subalpine fir, and whitebark pine mixed in at upper elevations. Cottonwoods and aspens are the most common deciduous species. Open areas with juniper and rock outcrops are also in the area. The dominance of Douglas fir indicates a lack of disturbance and fire suppression in Targhee and Bridger-Teton National Forests. This has left a large percentage of mature or older forests. ## 3.8.2 Shrubland Shrubland cover types include mountain brush, sagebrush, and riparian scrub. Most of the riparian scrub can be classified as *jurisdictional wetlands* and are dominated by willows. Mountain brush includes both wet and dry areas and consists of mountain mahogany on south slopes and hawthorn, chokeberry, serviceberry, snowberry, bitterbrush, and maple on various slopes depending on elevation. The sagebrush and juniper shrubs are found on drier hillsides and at lower elevations. Because shrubs are low-growing species, they dominate the ROW along with various grasses and forbs. #### 3.8.3 Grasses/Forbs Grasses, forbs, and short shrubs make up much of the existing ROW because of maintenance practices to keep the ROW free of trees and tall shrubs. Immediately next to Swan Valley Substation is a remnant fescue/bunchgrass community. Idaho fescue can be found mixed in the ROW throughout Targhee and Bridger-Teton National Forests in open areas at all elevations and associated with everything from Douglas fir to juniper. Pinegrass and wheatgrass are also found in the ROW and as an understory with Douglas fir or subalpine fir off the ROW. Forbs such as lupine, Indian paintbrush, arrowleaf balsamroot, and heartleaf arnica are found throughout the ROW. Tall forb community types occur on the east side of Teton Pass, while subalpine community types occur near the top of Teton Pass. ## For Your Information Jurisdictional wetlands are inundated or saturated by water often enough to support vegetation adapted for saturated soil ## 3.8.4 Agriculture The first 6.4 km (4 miles) of the existing ROW from Swan Valley Substation and the last 1.6 km (1 mile) to Teton Substation have been disturbed by agricultural and ranching practices or human development. Except for narrow riparian areas, most of the vegetation inside the ROW has been moderately to severely disturbed. Around Swan Valley Substation, cultivated fields support wheat and barley; by Teton Substation fields are in pasture. ## 3.8.5 Special Status Plants The Wyoming Natural Diversity Database, the Idaho Conservation Data Center, USFWS and the USFS all have lists of plants that hold special status. Of the plants on those lists, the following could potentially occur in the project area (WSR = Wyoming State Rare, USFS = Forest Sensitive, USFWS = threatened): - Androsace chamaejasme ssp. carinata Sweet-flowered rock jasmine (WSR, USFS) - Arceuthobium douglasii Douglas fir dwarf mistletoe (WSR) - Astragalus paysonii Payson's milkvetch (WSR, USFS) - Botrychium virginianum Rattlesnake fern (WSR) - Calamagrostis kieleroides (Dense pine reed-grass) - Carex livida Livid sedge (WSR) - Carex luzulina var. artopurpurea Black and purple sedge (WSR, USFS) - Descurainia torulosa Wyoming tansymustard (WSR, USFS) - Draba borealis Boreal draba (WSR, USFS) - Epipactis gigantea Giant helleborine (WSR) - Festuca hallii Hall's fescue (WSR, USFS) - Haplopappus macronema var. linearis Narrowleaf goldenweed (WSR, USFS) - Heterotheca depressa Teton golden-aster (WSR) - Lesquerella carinata var. carinata (Keeled bladderpod) - Muhlenbergia glomerata Marsh muhly (WSR) - Primula egaliksensis Greenland primrose (WSR, USFS) - Spiranthes diluvialis Ute lady's tresses (USFWS). ## 3.9 Wildlife This section provides information about wildlife that use the existing ROW. See Map 2, for general structure locations. More detail about wildlife is provided in Appendix
D, **Wildlife Report**. ## 3.9.1 The Pine Creek Bench Area of Swan Valley, Idaho The existing ROW crosses about 6.4 km (4 miles) of open cropland at Swan Valley Substation (from structure 1/1 to structure 3/7). Open cropland supports many birds, most notably a number of hawks (Northern harriers and red-tails) and owls. Between structures 3/7 and 4/7, the line crosses Pine Creek. This area could be used by nesting raptors and other wildlife associated with riparian zones such as breeding songbirds, amphibians, and reptiles. The lower Pine Creek basin is used as transitory range during spring and fall, when deer and elk are moving between summer and winter ranges (U.S. Department of Agriculture, Forest Service, 1996a). The Pine Creek benches of Swan Valley and the Rainey Creek feeding ground are wintering areas for deer and elk. # 3.9.2 First Pine Creek Crossing to Second Pine Creek Crossing and Crossing of State Route 31 From where it crosses Pine Creek, the ROW enters the steep, forested terrain that continues to gain elevation for about 40 km (25 miles) to Teton Pass, generally following State Route 31 in the Pine Creek Valley. Occasional rock outcrops in this area could contain habitat for hawks and other birds to nest and perch, roosting habitat for bats, and habitat for other birds, mammals, and reptiles. Pine Creek meanders in a relatively flat, riparian zone about 250 m (820 feet) wide. This riparian area is a known transitional range (between winter and summer ranges) for deer and elk; it is also good habitat for nesting songbirds and other wildlife associated with riparian areas. Sandhill cranes may travel into this area during mid-to-late summer with their young. Both bald eagles and peregrine falcons occasionally use Pine Creek drainage (see Section 3.9.6, **Threatened and Endangered Species**). Pine Creek drainage could be used as a flyway by trumpeter swans and other waterfowl between Swan Valley and the Teton Basin. # 3.9.3 Second Pine Creek Crossing to State Route 33 Crossing, Including Targhee Tap This forested section is typical of much of the habitat next to the existing ROW. Fire suppression has created a large proportion of dense stands of mature lodgepole pine and Douglas fir. This habitat is used by many species including cavity-nesting birds, such as woodpeckers and nuthatches. Northern goshawk, a USFS sensitive species, could forage and nest in these surrounding forests (see Section 3.9.8, **U.S. Forest Service Sensitive Species**). In addition, habitat is suitable for great grey owl (Oechsner, 1997). The ROW crosses northwest to southeast-oriented ridges and hilltops with open juniper and aspen shrubland on their southwest slopes and along ridgetops. These open areas provide good deer and elk summer habitat, and habitat for birds favoring open habitats, including ravens, great horned owls, and red-tailed hawks. Just east of Coalmine Creek (at structure 14/3), the habitat grades into dense forest of mostly lodgepole pine, Douglas fir, and subalpine fir intermixed with patches of aspen. This habitat is likely used by songbirds. Teton Basin is important waterfowl habitat, including wintering habitat for trumpeter swans and breeding and migratory habitat for sandhill cranes. The habitat near the ROW is at a transition point between forest and agricultural habitat types and may be used by many species. For example, red-tailed or Swainson's hawks, which occur in agricultural areas, may nest in the forested slopes next to cropland. Other birds may also take advantage of the transitional area, including black-billed magpie, common raven, American robin, northern flicker, pine siskin, and American goldfinch. Mammals, including deer, raccoon, coyote, and bats may rest and den in the woods while foraging in and around the basin's cropland. ## 3.9.4 State Route 33 Crossing to Teton Pass Area This area is shrubby, similar to habitat within the ROW, and likely supports different birds and small mammals than the forest previously described. #### 3.9.5 Teton Pass Area to the Jackson area Near Teton Pass, narrow avalanche chutes containing very shrubby thickets and occasional patches of *talus* and other open rock habitats cross the forest. These chutes provide a varied habitat used by songbirds and small mammals and, because of the high elevation, may be used by migratory songbirds during spring and fall migration. These more alpine habitats are also the known habitat for boreal owl, pika, and wolverine (a rare species reported at Teton Pass). The eastern portion of the pass is a USFS-designated wildlife viewing area. Going east from Teton Pass, the ROW follows a steep slope to a relatively flat alpine basin of mature subalpine fir and Douglas fir (ranging to 90 cm [35 inches] in diameter and over 30 m [100 feet] high) interspersed with open meadows. This habitat is potentially suitable for boreal and great gray owls, and other mountain birds, including Clark's nutcracker, rosy finch, white-crowned sparrow, and broad-winged hummingbird. Great-horned owls may be present in this area because the open meadow is typical foraging habitat and the adjacent mature forest is typical nesting habitat. The north side of Phillips Ridge is densely forested with a mix of small lodgepole pine (averaging 4 to 15 cm [1.5 to 6 inches] in diameter and 2 to 6 m [7 to 20 feet] high) and spruce, Douglas fir, and subalpine fir. The five percent that are dead are good habitat for woodpeckers and many other insect-eating birds such as nuthatches and chickadees. From Phillips Ridge the ROW drops down steeply to cross the relatively flat open sageflats, ranches, hayfields, and riparian habitat of the Jackson area to the Teton Substation. The area includes Fish Creek and associated tributaries called the spring creeks. Typical species include willow flycatchers, sparrows, and several species of warblers. American white pelican, Barrow's and common goldeneye, common merganser, and bufflehead also use the creeks (Raynes and Wile, 1994). Waterfowl including Canada goose, trumpeter swan, green-winged teal, and American widgeon (Raynes, 1995) and bald eagle and osprey use the agricultural fields and the associated wetlands and riparian habitats. These riparian areas are also critical habitat for wintering moose (Bohne, 1996). Collisions with overhead wires and fences are a source of trumpeter swan mortality in the Jackson Hole area (Bohne, 1986). Many of the collisions occur in late fall and winter when dense fog reduces visibility. Forested groves next to Teton Substation are habitat for many birds and mammals. Swainson's and red-tailed hawks nest in this habitat in the valley. Forested portions of this section of the ROW are suitable for northern goshawks (Oechsner, 1997). Idaho has its own list of threatened and endangered species; Wyoming uses the federal list as their state list. ## 3.9.6 Threatened and Endangered Species This section describes federal and state threatened and **endangered** species that may occur in the project area. More detail is provided in Appendix D. ## 3.9.6.1 Bald Eagle Bald eagles are federally-listed as threatened in Idaho and Wyoming and state-listed as endangered in Idaho. Bald eagles are more likely to occur in the vicinity of the existing ROW during October through March because resident breeding pairs are more likely to wander during winter, and migrating or wintering eagles move into the Swan Valley area. The eagles are mostly found along the Snake River, and occasionally venture into its tributaries, including Pine and Rainey creeks. Nesting and wintering bald eagles are also present in the Jackson area. The closest nest site is about 2 km (1.2 miles) south of the Teton Substation (Bohne, 1996). Another nest is near the southern edge of Grand Teton National Park, and a third is near Wilson. The existing ROW is relatively far from these nests but within the potential foraging range of all three. Nesting eagles are mostly likely to concentrate their foraging efforts along the Snake River, but may also forage within creeks near Teton and Jackson substations. The location of wintering bald eagles depends on the availability of food and changes daily. Bald eagles do not regularly occur in the central portion of the project area, but individual bald eagles could travel through this area. #### 3.9.6.2 Peregrine Falcon Peregrine falcons are listed as endangered in Idaho and Wyoming on federal and state lists. No peregrine falcon nests occur within or next to the existing ROW. The closest peregrine nest site is in Swan Valley, Idaho, on the south side of the Snake River, about 3 km (2 miles) south of the Swan Valley Substation. Other reported nests are near Heise, Idaho; several kilometers south of the Teton Substation; and in the Sheep Creek drainage near Palisades Dam, Idaho (U.S. Department of Agriculture, Forest Service, 1996b). Peregrine falcons hunt in the Teton Basin and nest in Teton Canyon, 21 (km) (13 miles) north of the existing ROW, and potential nesting habitat is present in other canyon drainages in the Basin (Oechsner, 1997). Peregrine falcons are wide ranging (Ratcliffe, 1993; Call, 1978), with breeding ranges extending up to 16 km (10 miles) from nest sites. The first 18 km (11 miles) of the ROW is within the foraging range of the Swan Valley pair. This includes most of the Pine Creek drainage, which contains potential habitat. The ROW is outside of the typical maximum foraging range for the other nest sites, but these birds and their offspring could occasionally occur in the project area during particularly long flights. The most likely places for peregrine falcons to occur are in the Swan Valley and Jackson areas especially near the Snake River, where waterfowl and other potential prey are concentrated. The densely forested portion of the central project area is not typical foraging habitat, but peregrines could forage within or travel through this area during nonbreeding seasons. ###
3.9.6.3 Whooping Crane Whooping cranes are listed as endangered on federal and state lists. The U.S. Fish and Wildlife Service (*USFWS*) attempted to start an experimental population in the Rocky Mountain region, but was unsuccessful. Potentially, up to three individuals remain in the Teton Basin area (Fisher, 1996), but this species is no longer considered viable in the area, and has been removed from the Targhee National Forest's endangered species list it maintains through consultation with the USFWS (Oechsner, 1977). Therefore, this species is not considered an element of the affected environment for this project. ### ▶ For Your Information The USFWS has reintroduced the gray wolf, an endangered species, into Yellowstone National Park. These wolves are classified as nonessential experimental wolves according to the Endangered Species Act. Under the Act, a listed species reintroduced outside of its current range, but within its historic range, may be designated "experimental." The Act requires animals used to form an experimental population be separated geographically from nonexperimental populations of the same species. Nonessential animals located outside of national wildlife refuges and national parks (e.g., on USFS land) are treated as if they were only proposed for listing. The intent of nonessential populations is to give the USFWS and other federal agencies additional management flexibility to protect species from becoming extinct. ## 3.9.6.4 Grizzly Bear The project area is within the historical range of the grizzly bear but outside the Yellowstone Grizzly Bear Ecosystem, an area for which the USFWS has identified management goals to bring population numbers up enough to de-list grizzly bears from the threatened list (U.S. Department of Agriculture, Forest Service, January 1996a). The USFS does not manage habitat within the project area for grizzlies because grizzlies use the area infrequently. Grizzly bears could occasionally travel across or near the project area. Grizzlies have been reported in the general vicinity and sighted within the project area. ## 3.9.6.5 Gray Wolf The project area is within historical wolf habitat and the Yellowstone Nonessential Experimental Area (U.S. Department of the Interior, Fish and Wildlife Service, 1994b). Land managers may temporarily restrict land use near active den sites. Wolves have been sighted near the project area, but no den sites are known in the area. One male who recently lost its mate has been traveling widely, including within and near the project area (Alford, 1996). ## 3.9.7 Category 1 Candidates Category 1 candidate species are species the USFWS tracks that have the potential to be listed as threatened or endangered in the future. Mountain plovers were identified as potentially occurring in the project area but no nests have been reported in the area. Potential habitat is present in the Swan Valley and Jackson areas. However, because these areas are in relatively intensive agricultural use and because the species has not been reported in the area, few breeding pairs are likely to be present. Western boreal toads may occur in the project area. They use wetlands and streams during the breeding season. ## 3.9.8 U.S. Forest Service Sensitive Species Table 3-4 lists U.S. Forest Service Sensitive Species, their habitat and if they are known to be in the project area. Appendix D includes a detailed description of these species and their habitats. Table 3-4. U.S. Forest Service Sensitive Species | Species | Habitat Present | Known in Area | |---|-----------------|-------------------| | Spotted Bat | Yes | No | | Townsend Big-eared Bat | Yes | No | | North American Lynx | Yes | Unknown, probably | | Wolverine | Yes | Yes | | Boreal Owl | Yes | Yes | | Flammulated Owl | Yes | Yes | | Common Loon | No | No | | Harlequin Duck | Yes | Probably | | Three-toed Woodpeckers and Other Cavity-nesting Species | Yes | Yes | | Great Gray Owl | Yes | Likely | | Northern Goshawk | Yes | Likely | | Spotted Frog | No | No | | Trumpeter Swan | Yes | Yes | | Fine-spotted Cutthroat Trout | Yes | Yes | | Fisher | Yes | Probably | ## 3.10 Fisheries The only indigenous trout in the streams and rivers of the project area is the finespotted cutthroat trout (a form of the Yellowstone cutthroat trout), which is a USFS sensitive species. Other trout, including rainbow, German brown, and brook trout, have been introduced to many of the drainages in the region, but few populations of these introduced species persist in great numbers. Other fish species in the region include mountain whitefish, bluehead suckers, Utah sucker, redside shiners, longnose dace, and mottled and Paiute sculpin. The existing ROW can be divided into several distinct drainages or stream reaches identified by structure numbers (see Map 2 for general structure locations). In steeper terrain, streams are generally confined within steep-sided valleys or canyons. The streams are capable of moving large amounts of sediment after natural disturbances such as high-intensity summer rains and fire. Human disturbances include diversions, livestock grazing, road construction, timber harvest, and recreation. Because of the rugged topography, the existing line spans valleys, and is usually well above creeks. Roads typically cross the upper reaches of drainages. Drainage crossings are normally made over culverts or existing bridges. BPA has used *fords* on Pine Creek, Little Pine Creek, and Murphy Creek to access the existing line. #### 3.10.1 Pine Creek Bench, Idaho The existing ROW from structures 1/1 to 5/1 primarily crosses agricultural lands. The ROW crosses several small intermittent streams (tributaries to Holland and Pine creeks) that have limited fish habitat. The transmission line spans Pine Creek (a perennial stream) between structures 3/7 and 4/1, which has a narrow riparian buffer of Douglas fir and aspen. Some trees have been removed to protect the conductors from damage. Finespotted cutthroat trout are present in this section of the creek, which probably provides some rearing habitat. Adult finespotted cutthroat migrate through this reach to spawning areas higher in the drainage. ## 3.10.2 Pine Creek Drainage, Idaho The existing ROW parallels Pine Creek from the mouth of the valley to Pine Creek Pass, up to structure 6/12 (near Pine Creek Ranch), where it spans Pine Creek and continues up the valley south of the creek. Although rated as having poor-to-fair fisheries habitat, Pine Creek provides a significant portion of spawning habitat for Snake River populations of finespotted cutthroat trout. ## For Your Information A **ford** is a travelway across a stream where water depth does not prevent vehicle movement. Ford construction can include grading and stabilizing stream banks at the approaches and adding coarse fill material within the channel to stabilize the roadbed. The Targhee National Forest 1997 Revised Forest Plan has expected values for specific native fish habitat features. The expected values are intended to guide management of native cutthroat trout habitat. Most spawning occurs between West Pine Creek and Tie Canyon (Dean, 1996). Beaver activity, grazing, roads, and recreation have contributed to sedimentation and poor bank stability in Pine Creek. ## 3.10.3 Little Pine Creek Drainage, Idaho The existing ROW from structure 14/2 to structure 15/1 parallels Little Pine Creek, spanning several small, intermittent tributaries. Little Pine Creek flows into the Teton River. Little Pine Creek, Coalmine Fork, Wood Canyon, and Murphy Creek likely provide spawning and rearing habitat for finespotted cutthroat trout (Dean, 1996). ## 3.10.4 Teton River Drainage, Idaho From structure 15/2, the existing line turns due east and bisects several small, intermittent headwater tributaries to the Teton River. Pole Creek has habitat finespotted cutthroat trout could use for rearing and spawning. ## For Your Information The Wyoming Department of Game and Fish (WDGF) has classified streams based on an appraisal of the existing trout fisheries. Classification provides the basis for planning, management practices and assessing impacts of proposed projects. Trail Creek east of structure 22/7 is in Wyoming. This reach of the stream has been classified as a Class 3 stream, that is, it has important trout waters and fisheries of regional importance. This section of Trail Creek has been classified as a Class 4 stream, that is, it has low production trout waters, and the fisheries are of local importance. ## 3.10.5 Trail Creek Drainage, Idaho and Wyoming At structure 21/2, the existing line spans Trail Creek (a tributary to the Teton River) and State Route 31. The ROW parallels Trail Creek up to structure 28/1, near the top of Teton Pass. The lower reaches of Trail Creek provide finespotted cutthroat trout spawning and rearing habitat. However, fish habitat is likely limited in the upper reaches due to steeper gradients upstream. Brook trout also may be present in Trail Creek. Coal Creek runs between the highway and the ROW between structures 26/8 and 27/6. Coal Creek crosses the highway through a culvert which likely prevents fish passage due to its grade. ## 3.10.6 Trail Creek Drainage, Wyoming From structure 28/5 the ROW drops down into a valley containing another stream called Trail Creek. At structure 30/3, the transmission line spans this other Trail Creek, leaving the valley and rising onto Phillips Ridge. This second Trail Creek provides some habitat for finespotted cutthroat trout. ## 3.10.7 Phillips Ridge, Wyoming The existing ROW at structure 30/5 is near the top of Phillips Ridge. Drainage from the alignment is toward North Fork Trail Creek and Phillips Canyon. However, the ROW does not cross any streams with a defined bed and bank. ## For Your Information Fish Creek has been classified as a Class 3 stream, that is, it has important trout waters and fisheries of
regional importance. Lake Creek is a Class 4 stream managed under a wild management concept by WDGF. ## 3.10.8 Fish Creek Drainage, Wyoming From structure 35/1, the transmission line drops down into the Jackson area, spanning Fish Creek and two small tributary streams. The line spans Fish Creek between structures 35/5 and 35/6. Fish Creek provides habitat for the finespotted Snake River form of cutthroat trout, brook trout, mountain whitefish, Bonneville redsides, speckled dace, Utah suckers, and mottled sculpin (Novak, 1996). Bluehead suckers also are present. The transmission line spans Lake Creek (a tributary to Fish Creek) between structures 35/7 and 35/8. Lake Creek provides habitat for finespotted cutthroat, brook trout, whitefish, and suckers. A tributary to Lake Creek is in a drainage ditch that flows around the northwest corner of Teton Substation. The tributary flows somewhat parallel to the ROW until reaching its confluence with Lake Creek. This tributary has suitable rearing habitat for trout. ## 3.11 Cultural Resources There has been prehistoric and historic activity in the project area. However, only a small amount of land in and near the project area within Idaho and Wyoming has been inventoried and, likely, only a small fraction of the existing prehistoric and historic sites have been recorded. Existing cultural resources sites and projects within one mile of the existing ROW are described. A detailed description is provided in Appendix E, **Cultural Resources Report**. ### 3.11.1 Prehistory The project area is situated in the heart of aboriginal territories of several Native American tribes including the Wind River (Eastern) Shoshone, the Northern Shoshone-Bannock, and the Sheepeaters (Kroeber, 1937; Shimkin, 1947; Walker, 1980). Other groups such as the Western Shoshone, Crow, Nez Perce, Atsina, Flathead, Blackfoot, Arapaho, Cheyenne, Gros Ventre, and Comanche also used the area. **Lithic** means associated with stones or rock. Lithic scatters are prehistoric sites, generally lacking cultural features or significant cultural depth, having a scatter of flakes and lithic debris which provide evidence of lithic reduction and/or temporary occupation activities. In Idaho, eight prehistoric sites within one mile of the existing ROW are recorded. They include seven *lithic scatters*, with no associated features or diagnostic tools, and a series of campsites. The campsites were recorded as one site, with no specific data about features and artifacts. Twelve prehistoric sites within one mile of the existing ROW were recorded in Wyoming. Ten lithic scatters and a series of hunting blinds are in mountainous areas. There is also an open camp on a bench above Fish Creek at the edge of the Jackson area. Records of lithic scatters and camps have little information about their cultural affiliation. Stone gathering for tools and implements was an important activity and occurred at local obsidian sources particularly near Teton Pass. The region was also seasonally used for hunting and plant gathering. Native American use of the area, particularly by the Wind River Shoshone and the Shoshone Bannock Tribe, is indicated by the sites described above and in other ways identified by informants. The hunting blinds north of Teton Pass are an unusual site type in the region and are the only site determined to be eligible for the National Register of Historic Places (*NRHP*). Most sites have not been evaluated for the NRHP. ## 3.11.2 History The Wyoming and Idaho border area near the Teton Mountain Range traces its historic beginnings to the fur trapping era, which lasted from 1808 through 1840. Following the Lewis and Clark Expedition of 1804 to 1806, American fur trappers began arriving in search of new trapping territory. The British, through the Hudson's Bay Company and the North West Company, also sent trappers into the region. The conflict between the two nations over the Oregon Territory and beaver pelts fueled an era of exploration and trapping competition that lasted for nearly two decades. American government explorers and surveyors entered the area, but it was settlers emigrating along the Oregon Trail during this period that would have the greater impact on the region. Between 1845 and 1865, hundreds of thousands of emigrants passed through the area bound for Oregon and California. The designation of the nation's (and the world's) first national park, Yellowstone National Park (1872), of the nation's first forest reserve, Yellowstone Park Timberland Reserve (1891), and other national forests, had a profound effect on the recreation and tourism industry of the area. Twenty historic sites found within one mile of the existing ROW in Idaho include historic trash associated with a former USFS ranger station, a lime kiln and quarry, an historic ferry across the Snake River, and 17 habitation sites including at least 16 houses and one cabin. There is limited information on most of these recorded sites. Most historic sites are homesteads clustered in the southern end of Teton Basin in Idaho. Information consists of a location and sometimes owners' names taken from an historic map. The diversity of historic sites reflects the varied use of the project area. The predominant type of site, residences, occur in a limited portion of the project area. Only the lime kiln and quarry have been determined to be eligible for the NRHP. Three historic sites found in Wyoming reflect the sparse, limited historic use of much of the project area. At one time there was a bridge over Fish Creek in the Jackson area, and a road house near Teton Pass. An irrigation ditch that runs through the Jackson area is still being used. #### 3.12 Socioeconomics The socioeconomics of the project area are influenced heavily by its geography and geology, particularly the spectacular beauty of the world renowned public lands, and the industries that exist because of it. Agriculture, mining, ranching, lumber and wood products, recreation, and tourism all are important industries in the region that result from the physical characteristics of eastern Bonneville County, Idaho and western Teton County, Wyoming. ### 3.12.1 Population The population within the project area is sparsely located and is characterized as largely rural, due to the lack of any large population centers in the area, with the exception of the Town of Jackson. The population centers that do exist include Swan Valley, Victor and Driggs, Idaho, and Wilson and Jackson, Wyoming. Caucasians are the majority population group in the area, with minorities comprising less than 5 percent of the population. Minorities consist of mostly Native Americans and people of Hispanic origin (University of Idaho/Bonneville County Cooperative Extension System, 1993; and Wyoming Department of Administration and Information, Division of Economic Analysis, 1995). Wyoming's population expanded by 40 percent during the 1970s primarily because of the energy boom that occurred in the country. During this 10-year period, Teton County, Wyoming's population almost doubled. The county's high growth rate continued in the 1980s, although at a slower rate, and the state estimates that the county's population will expand to 14,000 by the end of the millennium (U. S. Department of Commerce, Bureau of the Census, 1993, and the Wyoming Department of Administration and Information, Division of Economic Analysis, 1995). Bonneville County's population is also expanding; however, the growth rate has been slower than that experienced by Teton County, Wyoming. In 1990-95, Bonneville County's population has grown by 2 percent per year, while Teton County, Wyoming's growth rate has expanded by 2.5 percent per year (Wyoming Department of Administration and Information, Division of Economic Analysis, 1995; and Idaho Department of Employment, Research and Analysis Bureau, February 1996). ## 3.12.2 **Economy** The economy of northeastern Idaho, of which Bonneville County is a part, is driven by agriculture, agribusiness, nuclear and high-tech research, manufacturing, recreation and tourism. Agribusiness includes farming and ranching, food processing, and the manufacture of farm machinery. Of the nine counties of northeastern Idaho, Bonneville County, along with Madison County provided over 75 percent of the service sector jobs in the last 5 years, with most located in Bonneville County. Primary service sector employment in the area is found in the following employment categories: miscellaneous services, retail trade, wholesale trade and government (Idaho Employment, Idaho Department of Labor, Research and Analysis Bureau, August 1996). The economy of Teton County, Wyoming is heavily dependent on tourism. As a result the principal employment sectors are miscellaneous services (including the hospitality industry), and retail trade. Construction services is also a major sector in the local economy (U.S. Department of Commerce, Bureau of Economic Analysis, Regional Economic Analysis Division, 1994). ## 3.12.3 Employment and Income A good share of Teton County's employment, relative to the state as a whole, is in the services sector; manufacturing employment is only half what it is statewide (U.S. Department of Commerce, Bureau of the Census, 1993). High employment in the services sector, and low employment in the manufacturing sector is indicative of a county with relatively low average annual wages. The average annual wages for Teton County for 1994, the most recent information available, was 10 percent below the state average (\$19,960 vs. \$22,070) (Wyoming Department of Employment, Research and Planning Section, 1996). Though wages are relatively low in Teton County, per capita incomes are the highest of any county in the state. Teton County's per capita income for this same year was \$37,430. This disparity between low average annual wages and high per capita incomes results from the Jackson area being a relatively affluent retirement
community. Though the services sector is the largest non-farm employment sector in northeastern Idaho, the goods producing industries, including manufacturing, mining and construction are major contributors to the local economy. Average annual wages in Bonneville County in 1995, were \$23,575, compared to \$22,840 for the state as a whole (Idaho Department of Labor, Research and Analysis Bureau, August 1996). Both the county's and the state's per capita income were below the county's average annual wage for this year (Idaho Department of Employment, March 1997). #### 3.12.4 Taxes A variety of taxes is collected by state agencies to fund state and local government programs and services. These taxes include those that would be assessed on major capital improvements, including construction: sales and use taxes; property taxes; and income taxes assessed on construction labor. Additional taxes could also be affected, although to a lesser degree, and are not covered here. These taxes would include such taxes as locally assessed "room taxes" on commercial lodging facilities, fuel taxes, cigarette taxes, and other taxes. #### 3.12.4.1 Sales Tax Both Idaho and Wyoming assess a tax on goods and services sold within these states, commonly known as a sales tax. The two states also assess a tax on goods and services purchased elsewhere that would be consumed or used within their borders, commonly referred to as a use tax. Federal agencies are exempt from paying both the sales and use tax in Idaho, except when government contractors would be employed on a project (Garret, 1996). According to Sales Tax Rule 12(10) *Materials Provided by Project Owner*, If material needed for a contract is purchased or supplied by an owner who is exempt from sales and use taxes, then the use by the contractor is subject to use tax. This is true even if the property is owned by an exempt entity such as the federal government, or a state government agency. For example, if a contractor has a public works contract to build a structure using materials owned and supplied by the government, whether federal, state or local, he/she is the consumer of the materials and is subject to a use tax on their value. In Wyoming, federal agencies are exempt from paying sales and use taxes regardless of who constructs a project. Materials, such as supplies, equipment and other incidental purchases bought directly by a contractor for a federal project, however, would not be exempt (Bright, 1996). #### 3.12.4.2 Property Tax BPA acquires land rights (easements) from private property owners for the purpose of building, operating and maintaining transmission facilities. Such rights are for a specific purpose, and the underlying property owner retains ownership of the property. Because the landowner retains ownership, the landowner continues to pay property tax on the entire parcel, including that within any BPA easement. Because BPA is a federal agency, and exempt from paying local property taxes, improvements owned by BPA, such as transmission facilities, would not be taxed. BPA acquires land grants instead of easements from federal agency land managers such as the USFS. Because the USFS, as a federal agency, is also exempt from paying local property taxes, no property taxes are paid on land managed by the USFS, including that within a ROW granted to BPA for constructing transmission facilities. #### 3.12.4.3 Income Tax Idaho assesses a state income tax, however, Wyoming does not. The taxes are assessed based on where individuals work, rather than where they reside. Idaho's tax is capped at 8.2 percent for those with taxable incomes over \$20,000 filing individually, or \$40,000 for those filing a joint return. ## 3.13 Air Quality ## 3.13.1 Swan Valley and Teton Valley Airsheds The Swan Valley *airshed* has no significant air quality problems. The Teton Valley airshed has little trouble with air pollution problems because frequent southwest airflow prevents pollution buildup. #### 3.13.2 Jackson Airshed During January through April, the Jackson airshed can become inverted and suspended *particulate matter* can negatively affect local air quality. In 1986, the Wyoming Department of Environmental Quality placed a particulate monitor in downtown Jackson to observe this problem. So far the National Ambient Air Quality Standard for particulate matter at this monitoring station has not been exceeded. The highest 24-hour ambient particulate ## ▶ For Your Information **Particulate matter** is airborne particles including dust, smoke, fumes, mist, spray, and aerosols. Microns per liter or **ug/m³** is a common measure of pollutants in air. Section 160 of the Clean Air Act requires the protection, preservation or enhancement of air quality in national parks, wilderness areas and monuments. The 1977 Clean Air Act amendments called for a list of existing areas to be protected under section 160. These are called Class I areas (40 CFR 81 Subpart D). matter concentration at this station was 120 *ug/m³* (150 ug/m³ is the 24-hour particulate matter National Ambient Air Quality Standard); the highest reported annual average was 30 ug/m³ (50 ug/m³ is the National Ambient Air Quality Standard). The Department of Environmental Quality has concluded that the particulate matter problem in downtown Jackson is primarily due to road dust. #### 3.13.3 Protected Airsheds There are several protected airsheds in the vicinity of the project area. Air quality, visibility and plant and animal vigor in these protected airsheds should not be compromised. These airsheds include national parks and wilderness areas, some of which have been listed as Class I (one) areas under the Federal Clean Air Act. (See Section 5.15, **Emission Permits under the Clean Air Act** for a legal discussion of Class I areas.) The following are protected airsheds in or near the project: - Grand Teton National Park (a Class I area), about 10 km (6 miles) north of the existing ROW at Teton Pass; - Palisades Wilderness Study Area in the Bridger-Teton National Forest, surrounds the existing ROW (protected, but not listed under the Clean Air Act); - Jedediah Smith Wilderness Area in the Targhee National Forest (protected, but not listed under the Clean Air Act), about 150 m (492 feet) north of the ROW at its closest point; - Yellowstone National Park, (a Class I area), about 121 km (75 miles) north of the project; - the Wild and Scenic Snake River (protected but not listed under the Clean Air Act), about 8 km (5 miles) from the ROW: - Winegar Hole Wilderness Area, about 59 km (37 miles) north of the ROW (protected but not listed under the Clean Air Act); - Bridger-Teton Wilderness Area, about 68 km (42 miles) north of the ROW (a Class I Area); - Teton Wilderness Area, about 39 km (24 miles) north of the ROW (a Class I Area); and - the Gros Ventre Wilderness Area, about 21 km (13 miles) east of the ROW (protected but not listed under the Clean Air Act). Sulfur and nitrogen oxides mix with water drops (snow, rain, and fog) in the atmosphere and make sulfuric and nitric acid. These acids fall to the earth as acid rain or snow. The presence of these compounds in the air can cause respiratory problems and affect visibility. Some of the wilderness areas do not hold the Class I designation because they were (or will be) designated as Wilderness Area(s) after the 1977 revisions to the Federal Clean Air Act created Class I Areas. Nonetheless, these wilderness areas are treated as Class I Areas by local branches of the U.S. Department of Agriculture and Interior. For example, the Driggs Ranger District (on Targhee National Forest) will be monitoring visibility on the summit of the Grand Targhee Ski area, beginning in summer 1997. Monitoring will help the Forest and Park Services protect visibility around Grand Teton National Park. The USFS is also considering launching a lichen study in the park to monitor the impacts of *acid rain*.